# Looking Forward to LISA

Binary Supermassive Black Holes





The vast majority of galaxies have a central supermassive black hole.

 $10^6 - 10^9 \, M_{sun}$ 





Fu et al. 2015



Storchi-Bergmann et al. 2016

6600

6700

6500

#### But they AREN'T.



Smith et al. (2010)



Liu et al. 2016





Liu et al. 2016



Binary
Signatures in the Time
Domain



# Light Curve Periodicity



Kovacevic et al. (2019)



#### Better Light Curves!

- Even sampling
- Long baselines
- Extreme photometric precision



## Quasi-periodicity in a Kepler AGN



Smith et al. (2018b)

Quasi-periodic oscillations can also be used to weigh black holes, another important data point for LISA.

# **Gravitational Self-Lensing Flares**







## **Gravitational Self-Lensing Flares**



## KIC 11606854: A Self-Lensing Candidate





# Lots, lots MORE light curves!



- 20 billion galaxies
- 10-year baseline
- 6 color filters

# Image Centroid Shifts



# Lots, lots more, and better, light curves!





# **TESS AGN Light Curves**



## **TESS AGN Light Curves**



## **TESS AGN Light Curves**



Smith 2021, in prep





# Systematics:

Repulsosing spacecraft data: not an easy task!

Systematic dominate.

- -Scattered light from the sun and moon
- -Electronic noise
- -Thermal fluctuations







# Systematics: TESS 1390



# The origins of supermassive black



Occupation Fraction of massive black holes in dwarf galaxies

Seeds of supermassive black holes.